
Anders Magnusson

Bringing PCC into
The 21th century

October 11, 2008

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

About PCC

  Written in the mid-late-70’s by S.C. Johnson as a
portable and retargetable C compiler.

  Based on theory from the Richie PDP-11 C compiler and
Andy Snyder’s 1975 master thesis on portable C
compilers

  Was the reference implementation of C compilers and
was ported to almost any existing architecture.

  Was the system C compiler on almost all Unix systems
(on some still are!)

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

What have I done?

  Write a preprocessor that supports C99
features.

  Add the C99 features to the C compiler
parser step (frontend).

  Rewrite the code generator (backend)
almost entirely to be able to do
optimizations.

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Why?

  Needed a C compiler for PDP10 to be able to
port NetBSD to it.

  Wanted a better C compiler than the Richie
C compiler for PDP11.

  PCC was just released freely by Caldera.

  Have a slight interest in compilers.

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Layout of a C compiler

cc

cpp c0 c1 c2 as ld

cpp – The C PreProcessor

c0 – Parser and tree builder

c1 – Code generator

c2 – peephole optimizer

as – assembler

ld – linkage loader

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

PCC is small and simple

  The compiler consists of 30 files.
  The total size of the machine-independent

part of the compiler is 15000 lines of code,
9000 in the C language parser and 6000 in
the code generator.

  The machine-dependent part is 3000 lines,
where 1000 is the C-specific code and 2000
is for the code generator.

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

C Parser step overview

  Handles all initializations and data segment
allocations

  Does syntax checking of the compiled code,
prototype checks and casts

  Builds parse trees, inserts casts, converts array
references to register offset arithmetic

  Converts language-specific operators (comma
operator, lazy evaluation) to non-C-specific code

  Keep track of the symbol table and the different
name spaces

  Generates debugging information

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

C Parser machine-independent files

-rw-r--r-- 1 ragge wheel 31746 Sep 5 19:07 cgram.y
-rw-r--r-- 1 ragge wheel 3169 Oct 4 2004 gcc_compat.c

-rw-r--r-- 1 ragge wheel 17603 Apr 2 2005 init.c
-rw-r--r-- 1 ragge wheel 4133 May 19 22:52 inline.c
-rw-r--r-- 1 ragge wheel 7870 Sep 5 19:07 main.c

-rw-r--r-- 1 ragge wheel 7622 May 19 22:52 optim.c
-rw-r--r-- 1 ragge wheel 9701 Sep 5 19:07 pass1.h

-rw-r--r-- 1 ragge wheel 46282 Sep 5 19:07 pftn.c
-rw-r--r-- 1 ragge wheel 10216 Dec 11 2004 scan.l
-rw-r--r-- 1 ragge wheel 8956 May 21 10:31 stabs.c

-rw-r--r-- 1 ragge wheel 8371 Oct 3 2004 symtabs.c

-rw-r--r-- 1 ragge wheel 47022 Sep 5 19:07 trees.c

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Parser step MD code

  30 machine-dependent functions for the C
parser, most of them can be copied.

  Function clocal() is called after each tree
node is added to be able to do fast rewrite
of trees.

  Only two files are cpu-specific
-rw-r--r-- 1 ragge wheel 11487 Oct 3 18:08 local.c
-rw-r--r-- 1 ragge wheel 5016 Sep 5 19:07 code.c

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Internal tree structure

  The compiler builds binary trees in the
parser step

  These trees follows through the compiler

T2 T1

=

T0 +

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Internal tree structures

  A node always have at least two properties
  op – the operation the node is supposed to

perform (PLUS, REG, ASSIGN, …)
  type – the underlying (C) type of the operand (int,

float, char *, …)
  Nodes are of three sorts

  BITYPE – binary, node with two legs
  UTYPE – unary, left is a leg
  LTYPE – leaf, no legs

  A specific node op is always one of the
above.

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Nodes

  BITYPEs
  PLUS, MINUS, DIV, MOD, MUL, AND, OR, ER,
LS, RS, INCR, DECR, EQ, NE, LE, LT, GE,
GT, ULE, ULT, UGE, UGT, CBRANCH, CALL,
FORTCALL, STCALL, ASSIGN, STASG

  UTYPEs
  COMPL, UMUL, UMINUS, FLD, SCONV, PCONV,
PMCONV, PVCONV, UCALL, UFORTCALL,
USTCALL, STARG, FORCE, GOTO, FUNARG,
ADDROF

  LTYPEs
  NAME, ICON, FCON, REG, OREG, TEMP

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

UTYPEs
  UMUL

  Take value pointed to by expression
  FLD

  Use only some bits in expression
  SCONV, PCONV

  Convert expression value to scalar/pointer
  PMCONV, PVCONV

  Multiply/divide expression for array reference
  STARG, FUNARG

  (Structure) argument to function
  ADDROF

  Take address of expression
  FORCE

  Value should be put into return register

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

LTYPEs
  NAME

  Reference to the data stored at an address in memory.
  ICON, FCON

  A constant of some type. May be an address in memory.
  REG

  A hardware register on the target machine.
  OREG

  An offset from a register to a memory position, like the
stack or in a structure.

  TEMP
  A temporary variable generated by pass1 that is later

converted to either a REG or an OREG.

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

The ‘NODE’
  The NODE typedef is the basic structure used through the compiler

in both the parser and the code generator

 typedef struct node {
 int n_op;
 int n_rall;
 TWORD n_type;
 int n_su;
 union {
 char * _name;
 int _stsize;
 union dimfun *_df;
 } n_5;
 union {
 int _label;
 int _stalign;
 struct suedef *_sue;
 } n_6;
 union {
 struct {
 union {
 struct node *_left;
 CONSZ _lval;
 } n_l;
 union {
 struct node *_right;
 int _rval;
 struct symtab *_sp;
 } n_r;
 } n_u;
 long double _dcon;
 } n_f;
} NODE;

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Code generator steps

  There are four basic functions in the code
generation pass, called in order (sort of)
  geninsn()

  Finds instructions that covers as much as possible of the
expression tree; ``maximal munch’’

  sucomp()
  Does Sethi-Ullman computation to find best sub-tree

evaluation order
  genregs()

  Uses graph-coloring to do register assignment
  gencode()

  Emits the instructions and removes redundant code

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Instruction selection

  The basic principle of the compiler is
something like ”get a value into a register,
work on it, and then write it back”. Matches
RISC targets very well.

  Instruction selection is the first step in code
generation.

  Assigning instructions is done by matching
the trees top-down to find an instruction
that covers the largest part of the tree.

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Instruction selection #2

  If several instructions matches, the best
instruction is selected based on some
heuristics (other needs etc), or just the
position in the table.

  To be kind to CISC targets with funny
addressing modes, special target-dependent
functions can be written to match indirect
references:
  shumul() finds out if a shape matches
  offstar() sets the subtree into a usable state
  myormake() will do the actual subtree conv.

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Sethi-Ullman calculations
  Sethi-Ullman calculations is a way to find

out how many registers needed to evaluate
a parse tree on a simple architecture.

  It is usually used to see if a subtree must be
stored to be able to evaluate a full tree.

  In PCC Sethi-Ullman is only used to find out
in which order subtrees should be
evaluated.

  Numbering of in-tree temporaries is done
here.

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Register assignment

  The current register allocator uses graph-
coloring based on the George and Appel
pseudocode from their ACM paper.

  Extensions to handle multiple register
classes are added, with some ideas from a
Smith, Holloway and Ramsey ACM paper but
in a better and simpler way :-)

  If register allocation fails, geninsn() and
sucomp() may have to be called again.

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Instruction emitting

  Emitting of instruction is done bottom-up in
the order found by sucomp(). Tree rewriting
is used.

  Redundant code from the register allocation
phase (reg-reg moves) are removed here
(unless condition codes is needed)

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Optimizations

  When optimizing is enabled, the C language
parser will count all variables as temporaries
and let the register allocator try to put them
in registers.

  Redundant jumps (to next insn) are deleted.
  The trees are divided in basic blocks and a

control-flow graph is built.
  The trees are converted in SSA form (not yet

finished).

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Code generator files

  Machine-independent
-rw-r--r-- 1 ragge wheel 12587 Sep 5 19:07 common.c
-rw-r--r-- 1 ragge wheel 8837 Sep 17 09:58 manifest.h
-rw-r--r-- 1 ragge wheel 19438 Oct 6 19:56 match.c

-rw-r--r-- 1 ragge wheel 4133 Sep 12 09:02 mkext.c
-rw-r--r-- 1 ragge wheel 4016 Feb 5 2005 node.h

-rw-r--r-- 1 ragge wheel 20153 Sep 17 09:58 optim2.c
-rw-r--r-- 1 ragge wheel 10270 Oct 6 19:57 pass2.h
-rw-r--r-- 1 ragge wheel 25770 Sep 17 09:58 reader.c

-rw-r--r-- 1 ragge wheel 36859 Oct 6 22:50 regs.c

  CPU-specific
-rw-r--r-- 1 ragge wheel 18825 Sep 8 21:19 local2.c

-rw-r--r-- 1 ragge wheel 7847 Sep 17 09:58 order.c
-rw-r--r-- 1 ragge wheel 24420 Oct 6 22:50 table.c

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Code-generator CPU-specific code

  About 30 functions in total
  18 functions are related to instruction

emission.
  The table which is an array of optab entries

which each describes an instruction.
  The offstar()/ormake() functions are among

the most difficult to write. They searches
for situations where indexing of instructions
can be used.

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Instruction table

  The table is an array of entries that is the basis for
instruction selection.

{ PLUS, INAREG|FOREFF,
 SAREG, TINT|TUNSIGNED,
 SAREG|SNAME|SOREG, TINT|TUNSIGNED,
 0, RLEFT,
 " addl AR,AL\n", },

{ OPSIMP, INAREG,
 SAREG, TCHAR|TUCHAR,
 SCON, TANY,
 0, RLEFT,
 " Ob CR,AL\n", },

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Instruction table
  Macro ops in table

  Z - special machine dependent operations
  F - this line deleted if FOREFF is active
  S - field size
  H - field shift
  M - field mask
  N - complement of field mask
  L - output special label field
  O - opcode string
  B - byte offset in word
  C - for constant value only
  I - in instruction
  A - address of
  U - for upper half of address, only

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Future directions

  f77 frontend;
  The original f77 compiler that were targeted

towards the Johnson and Richie compilers were
quite simple to get running.

  C++ frontend;
  Despite what people say I think it won't be so

difficult to write one :-)

  as, ld, ...
  Original code exists, just spend some time...

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Nice books and papers

  A tour through the portable C compiler
  S. C. Johnson 1978

  Iterated Register Coalescing
  ACM paper, Appel & George 1996

  Compilers: Principles, Techniques, and Tools
  ”Dragon book”, Ravhi, Sethi, Ullman, ...

  Modern compiler implementation in C/Java
  Appel, ...

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Related stuff

  The pcc web site; http://pcc.ludd.ltu.se
  Mailing lists;

  pcc-list@ludd.ltu.se
  pcc-commit-list@ludd.ltu.se

Funding? Yes please! :-)

